課程目錄:R語言機器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)
        4401 人關(guān)注
        (78637/99817)
        課程大綱:

                  R語言機器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)

         

         

         

        R語言機器學(xué)習(xí)學(xué)術(shù)應(yīng)用
        基礎(chǔ)
        Theory: Features of time series data and forecasting basics

        R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

        中級
        Statistical Learning (SL):

        (0.5 Hour) One-step forecasting: one-step ahead model fit

        (0.5 Hour) Multi-step forecasting: recursive and direct methods

        (6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

        (5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

        R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

        Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

        高級
        Machine Learning (ML):

        (3 Hours) Tree models and SVM (Support Vector Machine)

        (6 Hours) Automatic ML for forecasting time series; 案例實做與寫作范例,涵蓋自動化演算6個機器學(xué)習(xí)方法:

        (1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

        (2) GLM

        (3) XGBoost (XGBoost GBM)

        (4) GBM (gradient boost machine)

        (5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

        (6) StackedEnsemble.

        (6 Hours) Econometric machine learning- Causality by ML prediction; 案例實做與寫作范例

        (3 Hours) Financial machine learning- Portfolio committees introduced; 案例實做與寫作范例

        R Lab: libraries of h2o, kera, tensorflow.

        Research issues: Granger causality, volatility forecasting, portfolio selection,

        economic fundamentals of exchange rates